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Abstract

Energetic charged particles trapped in the magnetosphere are routinely detected by satellite instruments. However, it
is generally difficult to extract quantitative energy and angular information from such measurements because the
interaction of energetic electrons with matter is rather complex. Beam calibrations and Monte-Carlo (MC) simulations

are often used to evaluate a flight instrument once it is built. However, rules of thumb and past experience are common
tools to design the instrument in the first place. Hence, we have developed a simple numerical procedure, based on
analytical probabilities, suitable for instrumental design and evaluation. In addition to the geometrical response, the

contributions of surface backscattering, edge penetration, and bremsstrahlung radiation are estimated. The new results
are benchmarked against MC calculations for a simple test case. Complicated effects, such as the contribution of the
satellite to the instrumental response, can be estimated with the new formalism.r 2002 Elsevier Science B.V. All rights

reserved.

PACS: 95.55; 94.80
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1. Introduction

The energetic (10 keV–10MeV) charged particle
populations trapped in the earth’s magnetosphere
are routinely sampled by satellite instruments.
Quantitative measurements are important because
penetrating charged particles can cause severe
damage to satellite electronics. Quantitative mea-
surements are also necessary for magnetospheric
science, when charged particle data from different

satellites must be compared. However, it is difficult
to extract quantitative energy and angular infor-
mation from energetic electron measurements
because material penetration, surface backscatter-
ing, and bremsstrahlung radiation can greatly
complicate the instrumental response [1]. While
the detection of energetic ions is generally more
straightforward, contamination of ion channels by
energetic electrons also occurs frequently.
Electron beam calibrations and Monte-Carlo

(MC) simulations are frequently used to assess the
performance of a flight instrument once it is built.
However, these complex and costly tools are not
often used for instrumental design. Instead, rules
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of thumb and past experience mainly prevail. The
instrumental response is often assumed to reflect
the geometry of collimators or apertures. Shielding
materials are selected empirically to reduce possi-
ble other contributions. It would be highly
desirable to use less-computer-intensive calcula-
tions than MC simulations to design and evaluate
quantitatively an instrument in the first place.
Hence, the motivation for the present study.
We present here a numerical procedure based on

analytical probabilities suitable to design a solid-
state energetic electron detector. This formalism is
referred to as AP (acronym for Analytical Prob-
ability) in this paper. The AP calculations extend
the geometrical response analysis of Sullivan [2] to
important other contributions, including back-
scattering, edge penetration, and bremsstrahlung
radiation. These effects are estimated with the AP
formalism and are compared to MC calculations
for a simple test case.
The AP and MC calculations are described in

Section 2. The geometrical response of the test case
is considered in Section 3. The effects of angular
scattering are discussed and the contribution of
surface backscattering is estimated in Section 4.
The edge cut trajectories, that can result from
material penetration and from angular scattering,
are analyzed in Section 5. The often dominant
contribution of bremsstrahlung photons is derived
in Section 6. Finally, the AP calculation is applied
to a real satellite instrument in Section 7, including
the substantial satellite contribution to the instru-
mental response. The results are discussed, and
some conclusions are offered in Section 8.

2. Analytical probability and MC calculations

The geometrical response of a satellite instru-
ment has been evaluated by Sullivan [2]. The AP
formalism generalizes Sullivan’s analysis to other
electron trajectories that can contribute substan-
tially to the instrumental response. Indeed, scat-
tered or penetrating electrons, and secondary
bremsstrahlung photons can often be detected in
larger numbers than electrons passing through
geometrical apertures. The AP calculations con-
sider the most important types of electron

trajectories from the top surface of the instrument
down to the detector. For each electron trajectory,
k; an overall detection efficiency, ek; is defined
analytically by multiplying the probabilities of
each step of the trajectory. In general, ek depends
on the incident electron energy, E; on the incident
unit vector direction, u; on the electron impact
point, P; and on the top surface of the instrument.
Spherical angles (y; f) around an axis, n; normal
to the top surface at point P; are used to
characterize u:
An incident differential electron flux j

(mm�2 sr�1MeV�1 s�1), spatially uniform and
time independent, is assumed on the top surface
of the instrument. The energy and angular
dependences of j are assumed separable, so that
one can write j ¼ j0ðEÞFðy; fÞ: The directional
response, Ak (mm

2), of the instrument can then be
expressed as

AkðE; y; fÞ ¼
Z

ekðE; y; f; PÞFðy; fÞu ds ð1Þ

where ds is a top surface element around P; and
the integral includes all top surface area where ek
is finite. One has u ds ¼ ðunÞ ds ¼ cosðyÞ ds
in Eq. (1). The instrument gathering power, Gk
(mm2 sr), corresponding to the electron trajectory
k; is obtained by integrating Ak over the entire
incident solid angle. One can write

GkðEÞ ¼
Z
df

Z
AkðE; y; fÞ sinðyÞ dy ð2Þ

where the integrals are performed over 0ofo2p
and 0oyop=2; respectively. The associated
instrument counting rate, Ck (s�1), is then
obtained as

Ck ¼
Z
j0ðEÞGkðEÞ dE: ð3Þ

A cylindrical collimator, sketched in Fig. 1, is
used as a simple example relevant to satellite
instruments. A monoenergetic disk electron source
(radius rs ¼ 2:5mm) is placed 1 mm above the
cylindrical collimator (radius rp ¼ 0:5mm and
length L ¼ 6mm). A large cylindrical detector
(radius rd ¼ 10mm and thickness Ld ¼ 5mm) is
located 0.5mm below the collimator. The source,
collimator, and detector have azimuthal (f)
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symmetry around the vertical z-axis issued from
the middle (point O) of the top aperture.
Electrons are emitted from the bottom surface

of the disk source with equal intensity in all
directions. This approximates a thin internal
electron conversion line from a radioactive cali-
bration source [3]. The electron flux incident on
the top surface is not isotropic (F ¼ 1) because
more electrons come from the edge of the
disk source than from the center. One derives F ¼
1=cosðyÞ for the above disk source, so that the
product Fu ds in Eq. (1) reduces to ds: Any impact
point P on the top surface can be located with a
radius rp and an angle fp: Azimuthal symmetry
in Fig. 1 permits one to write ds ¼ 2prp drp;
and Eq. (1) reduces to a single integral over the
radius rp:
The supporting MC calculations in this paper

are made with the MCNP transport code [4].
MCNP follows the primary electrons and all their
issues, including photons. This code, developed
and refined over many years, allows for compli-
cated geometrical objects and multiple materials.
Any surface can be chosen to be ‘‘ideal’’, that is,

fully absorbing for all species that intersect it. This
option will be often used in the following Sections
to study specific electron trajectories. A typical
MCNP calculation considers a large number
(N ¼ 12:8 or 51.2 million) of electrons of energy
E; emitted in all downward directions (2p solid
angle) from the disk source.
The output of an MC simulation consists of a

distribution of counts as a function of energy
deposited within the detector volume. The depos-
ited energy includes all species issued from a
particular source electron. The counts are distrib-
uted in 10-keV-wide energy bins, and the total
counts are obtained by summing all energy bins. In
the MC calculation, the instrument gathering
power can be inferred from the total count rate.
One can write j0ðEÞ ¼ NdðEÞ=ð2pAsÞ for the disk
source, where d is the delta function, and where
As ¼ pr2s is the source area. Then, one obtains
from Eq. (3)

Gk ¼ ð2pAs=NÞCk: ð4Þ

The above gathering power from the MC
calculation can be compared to that obtained with
Eq. (2) of the AP formalism for a specific class k of
electron trajectory. Of course, the comparison is
meaningful only if the MC counts are largely
dominated by electrons with trajectory k:

3. Geometry

The geometrical response of the collimator
sketched in Fig. 1 is first calculated. This is the
ideal response that comes from all straight electron
trajectories that do not intercept the top, side,
or bottom surfaces of the collimator. Only points
P within the top aperture area contribute to the
geometrical response. An example of geometrical
electron trajectory (k ¼ g) is sketched in Fig. 2(a).
For the collimator of interest, the geometrical
efficiency can be simply defined as

eg ¼ Hðrp � rqÞ ð5Þ

where H is the Heaviside function (HðxÞ ¼ 1 if
x > 0; H ¼ 0 otherwise), and rq is the radius of the
point Q where the electron intersects the bottom
aperture. For a given incident vector uðy; fÞ at a

Fig. 1. Sketch of the test case, including disk electron source,

collimator, and detector.
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point PðrpÞ of the top surface, one has

rqðrp; y; fÞ ¼ ½r2p þ L2 tanðyÞ2

þ 2Lrp tanðyÞ cosðfÞ�
1=2: ð6Þ

The geometrical directional response Agðy; fÞ is
calculated from Eq. (1), with 0orporp; and
with egðrp; f; yÞ derived from Eqs. (5) and (6). A
geometrical gathering power Gg ¼ 0:0171mm2 sr is
then computed from Eq. (2).
For elongated collimators (rp=L51) such as in

Fig. 1, the AP calculations can be much simplified
without appreciable loss of accuracy by assuming
that P-O (rp-0). With this approximation, one
obtains rq ¼ L tanðyÞ; eg ¼ Hðy1 � yÞ; and Ag ¼
ApHðy1 � yÞ from Eqs. (6), (5) and (1), respec-
tively. In these expressions, tanðy1Þ ¼ rp=L and
Ap ¼ pr2p: Finally, Eq. (2) yields Gg ¼ 2pAp
½1� cosðy1Þ� ¼ 0:0170mm2 sr, a result essentially
identical to that obtained without approximation.
One has GgBðAp=LÞ

2; which is the expected [2]

product of the aperture area Ap by the collimator
solid angle OBAp=L2: Inserting GgBðAp=LÞ

2 into
Eq. (3) or (4), one obtains CgBðNAp=AsÞðO=2pÞ:
This expression implies that Cg is the number of
electrons entering the top aperture multiplied by
the fraction of those electrons passing through the
bottom aperture.
An MC calculation of the geometrical response

of the collimator in Fig. 1 is made by choosing
ideal (perfectly absorbing) top, side, and bottom
collimator surfaces. All ideal surfaces in the MC
calculations are indicated with heavy solid lines in
Fig. 2. N ¼ 12:8 million electron trajectories are
issued from the disk source. A relatively low
electron energy, E ¼ 0:25MeV, is selected to
insure that no electron can penetrate the detector
thickness. Several calculations, with various de-
tector materials, yield total counts of 177274. The
4 counts uncertainty is statistical, as evidenced by
repeated calculations with identical initial condi-
tions. The total counts reflect Cg since non-
geometrical electron trajectories are terminated
by the ideal surfaces. Using Cg ¼ 1772 in Eq. (4)
yields Gg ¼ 0:0171mm2 sr, the same value as
obtained with the AP formalism.

4. Backscattering

Electrons are deflected from their initial direc-
tion as they penetrate materials because of elastic
scattering by atomic nuclei and their electrons [5].
The electrons that pass through thin materials
acquire Gaussian angular distributions around
their incident trajectories [6]. For thicker materi-
als, the Gaussian profiles evolve in cosine-like
angular distributions [5,7].
As a result of angular scattering, some of the

electrons incident on a given surface can back-
scatter with a fraction of their initial energy [5,7,8].
An example of backscattering, off a detector
surface, is sketched in Fig. 2(a) with the segment
SQ0: Detector backscattering always occurs to
some degree, and complicates the count distribu-
tions of MC calculations of the geometrical
response. Examples are shown in Fig. 3 for
beryllium, silicon, and tungsten detectors. While
most of the counts are found in the full energy bin,

Fig. 2. The main classes of electron trajectories, yielding (a)

geometrical, (b) wall backscattering, (c) edge cut, and (d)

bremsstrahlung instrumental responses. The ideal surfaces used

in the Monte-Carlo calculations are indicated with heavy lines.
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as expected for electron trajectories through
apertures, the counts in the lower energy bins are
caused by detector backscattering.
Backscattering coefficients are defined as ratios

of reflected to incident electrons. Normal incidence
backscattering coefficients can be inferred from the
count distributions of Fig. 3, as the ratios of the
counts found in energy bins are less than 0.25MeV
to the total counts. Such ratios are shown
with open circles in Fig. 4 for different material
Z values. The ratios agree well with the analytical

backscattering coefficients Z of Tabata [8] that are
shown with solid diamonds in Fig. 4. We adopt
Tabata’s coefficients as our AP backscattering
probabilities.
Backscattering increases with the material Z

value, as can be seen in Fig. 4. For example, about
40% of the electrons that impact a CdZnTe
detector with normal incidence are backscattered.
In addition, the average energy of the back-
scattered electrons increases for higher Z materials
[7]. This effect can be observed in the MC spectra
of Fig. 3, where more counts are found in lower
energy bins for higher Z materials. Backscattering
is essentially independent of electron energy for
Eo1MeV and decreases for higher E values [8].
Backscattering increases as the angle of inci-

dence, c ¼ p=2� y; decreases [7]. Grazing
incidence (c-0) on any material leads to back-
scattering coefficients approaching unity. Grazing
incidence backscattering occurs essentially as
specular reflection, with projected backscattered
angles FBc: Finally, grazing incidence back-
scattering results in little electron energy loss. We
have extracted, from the detailed experimental
results of Von Frank [7], some approximate
analytical functions for the differential backscat-
tering probabilities dp=dOðc; F; Z; EÞ: These
functions are chosen so that the backscattering
coefficients p ¼

R
ðdp=dOÞ dO satisfy the limits:

p-1 as c-0 and p-Z as c-p=2:
Collimator wall backscattering is an important

process for satellite instruments. An example of
this class (k ¼ s) of electron trajectory is sketched
in Fig. 2(b). An electron that enters the top
aperture at P is backscattered from a point P0 of
the side wall into the bottom aperture. For a given
incident electron direction, the detection efficiency,
es; is defined as

es ¼
Z

ðdp=dOÞ dO ð7Þ

where the integral is performed over the solid
angle of the bottom aperture viewed from P0:
We have also estimated and added to Eq. (7)
the contribution of electron trajectories that make
two bounces off the side wall. The resulting
efficiencies es are then inserted in Eq. (1),
which reduces to AsðE; yÞ ¼ ApesðE; yÞ with

Fig. 3. Monte-Carlo count distributions as functions of the

energy deposited into the detector volume. The distributions

result from the geometrical test case of Fig. 2(a), assuming

tungsten, silicon, and beryllium detectors.

Fig. 4. Calculated backscattering coefficients for normal in-

cidence on materials, as function of the material atomic

number. The results of Monte-Carlo and AP calculations are

indicated with open circles and solid diamonds, respectively.
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the P-O approximation. This approxima-
tion, detailed in Section 3, proves again to be
accurate and numerically simple for the elongated
collimator of Fig. 1. Then, GsðEÞ is obtained from
Eq. (2).
The ratios Gs=Gg; calculated with the AP

formalism for E ¼ 0:1MeV, are shown with solid
diamonds in Fig. 5 for several collimator materi-
als. The corresponding ratios inferred from MC
calculations are also shown in Fig. 5 with open
circles. The MC calculations use N ¼ 12:8 million
electrons and assume ideal top and bottom
surfaces. The low E value (0.1MeV) insures a
negligible bremsstrahlung contribution. The MC
total counts include mostly geometrical and wall
scattering contributions. The wall scattering
counts, Cs; are estimated by subtracting Cg ¼
1772 from the total counts. Then, Gs=Gg ¼ Cs=Cg
is used to obtain the MC points of Fig. 5.
The AP and MC calculations agree within about

20%. The wall scattering response is comparable
or greater than the geometrical response for all
materials. The scattering contribution increases
approximately as Z1=4 for the collimator of Fig. 1.
This scaling is similar, but weaker, than that of
normal incidence backscattering in Fig. 4. A
collimator aspect ratio scaling, Gs=GgBðrp=LÞ

1=2;
is derived from other AP calculations where rp and
L are varied.

5. Edge cut

Energetic electrons can penetrate through ma-
terial thicknesses comparable to their practical
range R [9]. The actual electron path lengths are
generally larger than R because of angular
scattering. Electron penetration through collima-
tor corners results in a class (k ¼ e) of electron
trajectories sketched in Fig. 2(c), that can be an
important contribution to the instrumental re-
sponse. Only electrons incident on the top surface
within a distance of a few R from the aperture
contribute to the edge cut response. An electron
incident at P reenters the collimator side wall at P0;
and passes through the bottom aperture at Q: The
electron can change direction from PP0 to P0Q
because of angular scattering. The edge cut
trajectories confuse the energy resolution of the
instrument because edge cut electrons can deposit
any energy up to E into the sensor, depending on
the path length PP0:
The transmission probability, T ; for a given

distance PP0 through a material, is defined as the
ratio of transmitted to incident electrons. Trans-
mission data through aluminum foils [10] suggests
that T can be approximated in terms of a
dimensionless variable x ¼ PP0=R as

TðxÞ ¼

1� 2x3; 0oxp0:5
1:5ð1� xÞ; 0:5oxp0:9
0:15 expð�10xþ 9; Þ; 0:9ox:

8><
>: ð8Þ

The detection efficiency ee; associated with an
edge cut trajectory e; can then be defined in terms
of T as

ee ¼ ð1� pÞTðxÞfe ð9Þ

where p is the backscattering probability at point
P; and fe is the fraction of the electrons that are
redirected from P0 within the bottom aperture. The
fraction fe is evaluated assuming that the electron
distribution at P0 is proportional to the cosine of
the polar angle around the incident direction PP0:
The directional response AeðE; y; fÞ and the
gathering power GeðEÞ are obtained by performing
numerically the integrals of Eqs. (1) and (2),
respectively, with eeðE; y; f; rpÞ taken from
Eq. (9).

Fig. 5. Collimator wall backscattering response, normalized to

the geometrical response, for various slab materials. The

normalized responses are calculated for the test case of Fig. 2(b)

as functions of the slab material atomic number.
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The ratios Ge=Gg are computed for the collima-
tor geometry of Fig. 1 and for various electron
energies E up to 1MeV. The collimator material is
chosen to be beryllium to enhance the edge cut
response, relative to wall scattering and brems-
strahlung contributions, in the MC calculations.
The ratios Ge=Gg; calculated with Eq. (2) of the AP
formalism, are shown in Fig. 6 with solid dia-
monds. The edge cut response increases approxi-
mately linearly with electron energy for
E > 0:5MeV. For the test example of Fig. 2(c),
Ge exceeds Gg for energies E > 0:7MeV. An
approximate scaling law, Ge=GgBR=rp; is obtained
from other AP calculations. This scaling is
expected because Ge comes from an annular area
B2prpR around the top aperture, while Gg comes
from the aperture area Ap: For a given value
of rp; Ge=GgBR: This scaling explains the energy
dependence of Ge=Gg in Fig. 6, since RBE for
E > 0:5MeV [9].
Monte-Carlo calculations have been performed

to estimate the edge cut response of the collimator
in Fig. 1. An annular cylindrical volume of
beryllium (2mm width, 2mm depth) surrounded
by ideal surfaces is considered, as sketched in
Fig. 2(c). The dimensions of the beryllium are a
compromise between two conflicting requirements
to isolate the edge cut contribution in the MC
calculations. Large dimensions prevent the edge

cut trajectories to intersect the surrounding ideal
surfaces for E up to 1MeV. Small dimensions
reduce two unwanted contributions: edge cut
trajectories followed by backscattering off the
beryllium portion of the collimator wall, and
bremsstrahlung photons generated inside the
beryllium annular volume. The edge cut counts,
Ce; are estimated by subtracting the geometrical
counts Cg from the total counts.
The ratios Ge=Gg ¼ Ce=Cg estimated from the

MC calculations are shown in Fig. 6 with open
circles. There is a good agreement between MC
and AP calculations in most cases, except for low
electron energies where the MC counts are about
twice as large. This discrepancy is presumably due
to MC counts, which are due to wall back-
scattering from the top third of the collimator.
Such counts may be significant, compared to the
edge cut counts, for sufficiently low electron
energies.

6. Bremsstrahlung

Energetic electrons lose energy by bremsstrah-
lung radiation when penetrating materials.
Although radiative energy losses are generally
small compared to collisional losses, most second-
ary photons can travel large distances through
materials. Hence, many photons reach the detector
where they can deposit some energy through
photoelectric, Compton, and pair-production in-
teractions. As will be shown later in this paper,
bremsstrahlung photons often dominate the in-
strumental response.
We consider again the test geometry of Fig. 1

to estimate the bremsstrahlung contribution.
However, we remove the collimator channel, as
shown in Fig. 2(d), to eliminate the geometrical,
wall scattering, and edge cut responses in the MC
calculations. The bremsstrahlung contribution is
not changed much by eliminating the collimator
because the aperture area Ap is much smaller than
the source area As: The P-O approximation can
again be used successfully in the AP calculations
because all points P are located within a source
radius rs of O and because rs is smaller than both
the slab thickness L and the detector radius rd: The

Fig. 6. Edge cut response, normalized to the geometrical

response, for various incident electron energies. The normalized

responses are calculated for the test case of Fig. 2(c) with

beryllium slab material.
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dotted line portion of the trajectory b in Fig. 2(d)
illustrates a typical photon trajectory.
The bremsstrahlung yield into the detector, per

incident electron of energy E; is estimated with the
AP formalism by adapting Ferdinande’s calcula-
tion [11]. Although oblique (y > 0) electron trajec-
tories are considered in the complete calculations,
we only describe normal incidence (y ¼ 0) electron
trajectories to simplify the presentation. Brems-
strahlung photons are produced near the top
surface, in the electron penetration layer of
thickness R: At any point x within that layer, the
electron has an average energy EðxÞBEð1� x=RÞ;
so that photons are locally generated with energy
kpEðxÞ: At position x the electron transmission
probability is Tðx=RÞ=cosðaeÞ; where aeB401
accounts for the increased path length due to
angular scattering [11]. The photon differential
energy spectrum dYðkÞ=dk that impacts the
detector is obtained by integrating over slab
elements. One can write

dY=dk ¼ fd

Z
exp½�mðL� xÞ�

	 ½NaðT=cosðaeÞÞ ds=dk� dx ð10Þ

where the integral is taken from the top surface,
x ¼ 0; down to a maximum depth Rð1� k=EÞ: The
latter comes from the upper bound EðxÞ ¼ k: The
exponential term inside the integral of Eq. (10)
accounts for photon attenuation within the re-
maining material thickness L� x; Na is the atomic
density, and ds=dk is the differential radiative
cross-section given by Evans [9]. The factor fd; in
front of the integral of Eq. (10), represents the
angular fraction of the photons that reach
the detector. This fraction, fd ¼

R
gOd; is derived

by integrating the photon angular distribution g

over the solid detector angle Od viewed from the
origin. The photon distribution g is estimated by
convoluting the normal distributions of electrons
and photons [11]. For normal incidence, one has

gðbÞ ¼ ½1=ðy2e þ y2bÞ� exp½�b2=ðy2e þ y2bÞ� ð11Þ

where b is the photon polar angle, and ye and
yb are the characteristic normal distribution
angles for electrons and bremsstrahlung photons,
respectively [11]. The angle yb is averaged over
electron energies. Then, with dOB2pb db; one

approximately obtains

fdBOd=½pðy
2
e þ y2bÞ� ð12Þ

which is Ferdinande’s expression for forward
photon direction [11]. Taking into account detec-
tor absorption, the total bremsstrahlung yield into
the detector becomes

Y ¼
Z

ðdY=dkÞ½1� expð�mdLdÞ� dk ð13Þ

where the integral includes all photon energies
0okoE; and where dY=dk is given by Eq. (10).
The bremsstrahlung detection efficiency eb per
electron can then be written as

eb ¼ ð1� pÞY ð14Þ

where p is the backscattering coefficient for
electrons incident on the top surface.
For the test case of Fig. 2(b), and using the

P-O approximation, the detection efficiency eb is
function of E and of the incident polar angle y:
The directional response AbðE; yÞ reduces to
AsebðE; yÞ: Then, the gathering power GbðEÞ is
obtained from Eq. (2). The ratios Gb=Gg; com-
puted with the above AP formalism for several
electron energies and for three different materials,
are shown with solid diamonds in Fig. 7. The
values of Gb=Gg are quite large (up to 50) in most
cases. The ratios Gb=Gg increase nearly linearly

Fig. 7. Bremsstrahlung photon response, normalized to the

geometrical response, for various incident electron energies.

The normalized responses are calculated for the test case

of Fig. 2(d) with beryllium, aluminum, and tungsten slab

materials.
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with E for the beryllium and aluminum cases. In
general, an energy scaling GbBE1�2 is obtained.
The exponent depends on the thickness and
Z value of the absorber and detector. The
calculations in Fig. 7 show lower values of Gb=Gg
for higher Z materials, which may seem somewhat
counterintuitive. Although the photon production
scales as Z2; the exponential-like photon attenua-
tion within the material dominates and results in
smaller Gb=Gg ratios for larger Z values.
Supporting MC calculations of the bremsstrah-

lung yield are also performed for the slab geometry
of Fig. 2(d). The number of source electrons is
increased by a factor of four (N ¼ 51:2 million) for
these calculations in order to obtain sufficient
statistics. The ratios Gb=Gg obtained from the MC
calculations are shown with open circles in Fig. 7
for the same cases as above. The two calculations
are within 50% agreement for all cases in Fig. 7, in
spite of some approximations for fd for oblique
cases.
Some of the MC counts are presumably caused

by secondary electrons, although the distributions
of deposited energy do not permit species identi-
fication. Secondary electrons are generated inside
the slab as a result of photoelectric and Compton
interactions. Only those secondary electrons gen-
erated within a distance R of the bottom of the
slab can escape to deposit their energy into the
detector. The photon differential flux dY=dk
exiting the slab, given in Eq. (10), can be used to
estimate the relative secondary electron contribu-
tion. This contribution is found negligible
(o0.1%) for the beryllium and aluminum cases,
but is of order 10% for most tungsten cases.
The relative contribution of secondary electrons

to photons is approximately mR=mdLd; where m
(slab) and md (detector) are evaluated at the mean
photon energy. The numerator is the ratio of
secondary electrons (BmR) to photons (B1) that
reach the detector. The denominator accounts for
the different detection efficiencies (B1 for elec-
trons, BmdLd for photons). The secondary elec-
tron contribution can be important when high
Z materials, such as tungsten (high photoelectric
m), are used next to thin detectors (low Ld values).
However, such contributions can be neglected here
because the detector is very thick.

7. Satellite instrument example

We now apply the AP formalism to the BDD-
IIR charged particle monitor. This instrument has
been successfully launched on a Global Position-
ing Satellite (GPS) in November 2000. The BDD-
IIR detectors measure the omnidirectional ener-
getic particle fluxes impinging on the satellite
20,000 km above the Earth’s surface [12]. We
briefly describe below the solid-state instrument,
the BDD-IIR box, and GPS satellite, since all
contribute to the instrumental response.

7.1. The BDD-IIR instrument and the GPS satellite

The BDD-IIR energetic charged particle moni-
tor consists of eight identical silicon detectors
(disks of 8-mm diameter and 300-mm thickness)
located behind different absorbers [12]. We analyze
here channel 3 of the BDD-IIR instrument. Its
hemispherical beryllium, titanium, and gold ab-
sorber is sketched in Fig. 8(a). The beryllium
includes five cylindrical gold collimators (1.5-mm
diameter and 18.3-mm length) that yield a
geometrical response Gg ¼ 0:046mm2 sr. Beryl-
lium filters (0.74-mm thickness) located at the
bottom of the collimators define an electron
energy lower threshold of about 0.48MeV. The
electronics discriminator counts all events for
which an energy detector greater than 74 keV is
deposited into the silicon detector.
The hemispherical absorber is mounted on top

of an aluminum box (0.21	 0.11	 0.28m3 dimen-
sions) sketched in Fig. 8(b). The thickness of the
aluminum walls is 4.5mm. The 35-mm high sensor
deck below the dosimeters is essentially void,
except for plastic detector mounts and electric
wires. A piece of stainless steel (mass ballast of
100	 100	 20mm3 dimensions) is located just
below the sensor deck. The bottom portion of
the box contains eight electronics modules.
The BDD-IIR box is mounted near a corner of

the earth-facing top surface of the GPS satellite, as
sketched in Fig. 9. The satellite outer surfaces
define roughly a rectangular aluminum box
(1.9	 1.5	 1.5m3 dimensions). Although the sa-
tellite walls have a complex honeycomb structure,
they can be well approximated by an average
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aluminum thickness of about 0.5mm. Aluminum
structural hardware, titanium propellant tanks,
batteries, and electronics modules are found inside
the satellite. The external antennas and solar
panels shown in Fig. 9 are not important for this
study because they are far away from the BDD-
IIR box. However, the UHF and L-band antennas
and the BDY optical sensor located on the top
surface of the satellite must be considered in the
calculations.

7.2. Calculated front responses

We calculate separately the contributions of the
hemispherical absorber assembly, of the BDD-IIR
box, and of the GPS satellite. The gathering power
G of the absorber, calculated with the AP
formalism and normalized to the geometrical
response Gg ¼ 0:046mm2 sr, is shown in Fig. 10

with solid diamonds for electron energies up to
7MeV. Higher electron energies are not consid-
ered because there are too few such electrons at
GPS satellite orbit. The open circles are the results
of MC calculations with an isotropic, monoener-
getic, hemispherical electron source around the
absorber. The good agreement between the two
calculations is somewhat fortuitous since the MC
simulations use a slightly different geometry for
the aluminum top plate.
The contributions of various processes to the

AP front response are shown in Fig. 10 with solid
curves labeled with a letter. The geometrical
response (g) is essentially unity for all energies
greater than the 0.48MeV filter threshold of the
gold collimators. There is a smooth increase
between 0.48 and 1MeV due to electron penetra-
tion of the filters. Collimator backscattering (s) is
similar in shape as the geometrical response, and
about half as large. Backscattering is substantial
for high Z gold collimators. However, gold is hard
to penetrate, so that the edge cut contribution (e) is
negligible for most electron energies. There is no
obvious choice for the collimator material because
backscattering and edge cut contributions tend to
compensate each other.
The bremsstrahlung contribution (b) from the

beryllium, titanium, gold, and aluminum absorber
is also indicated in Fig. 10. The ratio Gb=Gg scales
approximately as E2 and clearly dominates the
instrumental response between 2.5 and 5.5MeV.
A substantial number of photons generated in the
absorber reach the silicon detector where they can
deposit more than the 74 keV threshold energy
through photoelectric and Compton interactions.
Finally, primary electron penetration (p) of the
large-area hemispherical beryllium absorber dom-
inates for E > 6MeV but is negligible for
Eo5MeV. Electron penetration is calculated in
a way similar as for the edge cut in Section 5.
The responses in Fig. 10 can be used in Eq. (3)

to derive instrumental count rates. The equatorial
omnidirectional electron fluxes j0 in the earth’s
radiation belts can be approximated by two
relativistic Maxwellian energy distributions [13].
There is a cold component of density n1 and
temperature T1; and a hot component of density n2
and temperature T2: The average electron fluxes at

Fig. 8. Sketch of (a) the shield and detector of channel 3 of the

BDD-IIR monitor, and (b) the flight box.
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GPS orbit correspond to n1 ¼ 3000m�3,
T1 ¼ 60 keV, n2 ¼ 600m�3, and T2 ¼ 320 keV.
This average j0 yields 517 total front counts
per second in the BDD-IIR-3 electron channel.

The total includes 283 geometrical counts, 3 edge
cut counts, 86 wall scattering counts, and 144
bremsstrahlung counts.
Occasionally, during magnetic storm times, the

hot electron population can be much larger. For
example, one measured n2 ¼ 3000m�3 and
T2 ¼ 450 keV on March 24, 1991. For this case,
one calculates 4723 front counts per second in
the BDD-IIR-3 instrument, including 2006 from
the geometry and 1985 from bremsstrahlung.
Hence, the geometrical response is only 40–60%
of the total front response for the above cases.

7.3. Calculated back responses

The satellite surfaces are continuously exposed
to charged particles. In particular, energetic
electrons create a significant bremsstrahlung
photon flux in all directions. Some of these
photons reach the back side of the detector and
contribute to the instrumental response. Although
such effects are too complex to be quantified with
MC calculations, the AP formalism can be used to
estimate them. We calculate separately the con-

Fig. 9. Sketch of the GPS Block IIR satellite.

Fig. 10. Calculated front responses of channel 3 of the BDD-

IIR charged particle monitor, normalized to the geometrical

response, as functions of incident electron energy. The total

front responses from Monte-Carlo and AP calculations are

indicated with open circles and solid diamonds, respectively.

The contributions of various processes to the AP total front

response are indicated with solid lines labeled with a letter.
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tributions of the BDD-IIR box and of the rest of
the satellite.
Cartesian coordinates, centered in the middle of

the silicon detector, are used to define small
rectangular surface elements. For any point P at
the center of a surface element, we calculate the
bremsstrahlung photon production and attenua-
tion along a path PO with the formalism described
in Section 6. The photon attenuations (g/mm2) are
defined for the principal materials encountered
(beryllium, carbon, aluminum, titanium, iron, and
gold) as function of the polar angle b between PO
and the vertical z-axis.
The calculated normalized responses of the box

and satellite are shown with symbols in Fig. 11
as function of electron energy. The total
(front+box+satellite) normalized response is also
indicated with a solid curve in Fig. 11. The box
and satellite contributions have similar (BE2)
energy dependences. Surprisingly, the contribution
of the 0.2m2 box is about a factor 2 higher than
that of the 20m2 satellite surfaces. This occurs
because surfaces closest to the detector dominate
the bremsstrahlung yield. The detector solid angle,
Od ¼ Ad cosðbÞ=PO2; brings into Eq. (12) an in-
verse square distance weighting to the various
surface elements. The cosðbÞ of Od is cancelled in
Eq. (13) by the thin detector absorption factor
BmdLd=cosðbÞ:

The importance of nearby surfaces is a recurring
theme in these back response AP calculations. For
example, the top surface of the box (excluding the
channel 3 absorber) is the largest contribution to
the box response. The top 25% of the vertical sides
of the box contribute more than the bottom 75%
of the vertical sides. The top surface of the satellite
where the box is mounted contributes as much as
all the other satellite surfaces. The UHF antennas
(12%), L-band antennas (5%), and BDY sensor
(3%) contribute about 20% to the overall back
response. This percentage roughly reflects the
respective external surface areas: 4m2 for the
antennas and 16m2 for the satellite faces. Again,
items closest to the BDD-IIR box are more
important.
The back response AP calculations include

many details of relatively minor importance. For
example, the box contribution includes the addi-
tional electron flux that backscatters from the top
satellite surface. This addition is somewhat offset
by shadowing of the satellite surface by the box, an
effect which is important on the surface elements
close to the box. While the satellite bremsstrahlung
photons come mostly from the thin aluminum skin
of the satellite outer surfaces, there is some
contribution from inner structures for high
electron energies.
The back responses of Fig. 11 can be used in

Eq. (3) to estimate the total instrumental count
rates for the same j0 as for the front response. For
the average j0 at GPS orbit, the BDD-II-R box
and the rest of the satellite add 438 and 207 counts
per second, respectively, to the 517 front counts
previously calculated. For the storm time j0; the
box and the satellite add 4386 and 2070 counts,
respectively, to the 4723 front counts. These
examples indicate that the geometrical response
of the collimators amounts to only about 20% of
the total instrumental electron response, when the
satellite structures are taken into account.

8. Discussion and conclusions

We have developed a new (AP) numerical
technique, based on APs, that is, suitable to design
and to evaluate the response of satellite charged

Fig. 11. Calculated AP contributions of the flight box and of

the GPS satellite to channel 3 of the BDD-IIR monitor as

functions of incident electron energy. The total response of the

channel is also indicated. All responses are normalized to the

geometrical response.
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particle detectors. While the geometrical response
is generally sufficient to characterize ion channels,
this is not the case for energetic electrons. Angular
scattering, material penetration, and bremsstrah-
lung radiation generally contribute substantially to
the overall instrumental response. The AP form-
alism, summarized by Eqs. (1)–(3), requires an
analytical expression for the detection efficiency
and the computation of up to 5 integrals for each
class of particle trajectory. A typical AP calcula-
tion, with a PC software such as Mathcad, takes
less than 1min of real time.
We have demonstrated the reasonable accuracy

of the AP calculations by comparisons with MC
simulations for a simple test case. Some approx-
imations are necessary to define the analytical
detection efficiencies. For example, the angular
distribution of bremsstrahlung photon depends on
local electron energy, an effect that must be
averaged before convolution with incident electron
directions and angular scattering. The AP formal-
ism considers only the main classes of particle
trajectories. Some higher order processes, such as
multiple wall backscattering or combinations of
edge cut, scattering, and photon production, are
neglected. A complete AP calculation is probably
accurate within about 50%, a reasonable balance
between computational complexity and accuracy.
The usefulness of the AP calculation is perhaps

best illustrated in Section 7, where the complex
instrumental box and satellite contributions have
been estimated for one electron channel of the
BDD-IIR instrument. These contributions in-
crease the instrumental response by a factor of
2–3, depending on the electron population at GPS
satellite orbit. The AP calculations in Section 7 are
perhaps the first quantitative estimates of box and
satellite contributions to a charged particle instru-
ment, although dose calculations for space micro-
electronics [14] also consider satellite structures.
Some dose calculations are made with a discrete
ordinates numerical technique that is faster but
may require more computer memory than an MC
simulation [15]. Dose calculations stress the
importance of bremsstrahlung photons, and of
photoelectrons issued from high Z surfaces near
thin silicon electronics, in a way similar as in
Section 6 of the present paper.

The AP formalism can be applied to more
complex cases than the simple test case in this
paper. We list here some examples that have been
implemented, but have not been included in this
paper. The geometrical response of Section 3 can
easily be generalized to cases without azimuthal
symmetry. The geometrical efficiency eg in Eq. (5)
becomes the product of 4 Heaviside functions for
rectangular collimators. If a three-element tele-
scope is considered, additional Heaviside functions
are included for the third aperture. The AP
calculations of geometrical responses can also be
extended to account for thin foil scattering. Each
bottom aperture point Q becomes a circular area
proportional to the scattering angle. The portion
of the circular area that lies within the bottom
aperture now defines the detection efficiency.
Thin foil scattering of low-energy electrons can
confuse the angular resolution of satellite instru-
ments that use arrays of solid-state detectors
behind an aperture lined with a light shield. The
bremsstrahlung photon AP formalism, described
in Section 6, can be applied to the response of
X-ray sensors. Some combinations of photon
source, filter, and silicon detector have already
been considered.
The present AP calculations are sufficient to

estimate all important instrumental effects in most
cases. Future AP calculations could consider
explicitly the energy distribution of the detected
species. Energy resolution would be useful to
evaluate the response of instruments that include
differential rather than integral energy channels,
and for comparisons of AP calculations with MC
count distributions or with energy analyzer spec-
tra. Last but not least, we found the AP
calculations to be excellent teaching tools, since
they yield much insight in the relative contribu-
tions and in the scaling laws of various processes.
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